![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Optimization > Game theory
Optimality and stability are two important notions in applied mathematics. This book is a study of these notions and their relationship in linear and convex parametric programming models. It begins with a survey of basic optimality conditions in nonlinear programming. Then new results in convex programming, using LFS functions, for single-objective, multi-objective, differentiable and non-smooth programs are introduced. Parametric programming models are studied using basic tools of point-to-set topology. Stability of the models is introduced, essentially, as continuity of the feasible set of decision variables under continuous perturbations of the parameters. Perturbations that preserve this continuity are regions of stability. It is shown how these regions can be identified. The main results on stability are characterizations of locally and globally optimal parameters for stable and also for unstable perturbations. The results are straightened for linear models and bi-level programs. Some of the results are extended to abstract spaces after considering parameters as controls'. Illustrations from diverse fields, such as data envelopment analysis, management, von Stackelberg games of market economy, and navigation problems are given and several case studies are solved by finding optimal parameters. The book has been written in an analytic spirit. Many results appear here for the first time in book form. Audience: The book is written at the level of a first-year graduate course in optimization for students with varied backgrounds interested in modeling of real-life problems. It is expected that the reader has been exposed to a prior elementary course in optimization, such as linear or non-linear programming. The last section of the book requires some knowledge of functional analysis.
The primary goal of this book is to present the research
findings and conclusions of physicists, economists, mathematicians
and financial engineers working in the field of "Econophysics" who
have undertaken agent-based modelling, comparison with empirical
studies and related investigations.
This monograph studies multi-member households or, more generally, socio-economic groups from a purely theoretical perspective and within a general equilibrium framework, in contrast to a sizeable empirical literature. The approach is based on the belief that households, their composition, decisions and behavior within a competitive market economy deserve thorough examination. The authors set out to link the formation, composition, decision-making, and stability of households. They develop general equilibrium models of pure exchange economies in which households can have several, typically heterogeneous members and act as collective decision-making units on the one hand and as competitive market participants on the other hand. Moreover, the more advanced models combine traditional exchange (markets for commodities) and matching (markets for people or partners) and develop implications for welfare, social structures, and economic policy. In the field of family economics, Hans Haller and Hans Gersbach have pioneered a 'market' approach that applies the tools of general equilibrium theory to the analysis of household behavior. This very interesting book presents an overview of their methods and results. This is an inspiring work. Pierre-Andre Chiappori, Columbia University, USA The sophisticated, insightful and challenging analysis presented in this book extends the theory of the multi-person household along an important but relatively neglected dimension, that of general equilibrium theory. It also challenges GE theorists themselves to follow Paul Samuelson in taking seriously the real attributes of that fundamental building block, the household, as a social group whose decisions may not satisfy the standard axioms of individual choice. This synthesis and extension of their earlier work by Gersbach and Haller will prove to be a seminal contribution in its field. Ray Rees, LMU Munich, Germany
This volume collects outstanding contributions to the theory of games, the theory of game-theoretical rationality, and their applications. 27 articles present the new situation and the recent advances in game theory after the award of the Nobel Prize in economics and especially in game theory to John F. Nash, John C. Harsanyi, and Reinhard Selten. Two of them, Harsanyi and Selten, have contributed leading articles to this volume. In utility and game theory, the question of which rationality governs their methods and the behavior of the agents as well has emerged as one of the most exciting new conceptual foundations of all social sciences. The main aim of this book is to find an answer to this problem. Do we have to give up our belief in the traditional form of deductive and linear rationality in the social sciences in favor of probabilistic and stochastic methods? Which kind of rationality do we, and should we, use when we attempt to practically solve societal problems and conflicts? Quite a few articles in this book address these questions. The consequences of a new, multi-faceted rationality, which is going to shake the traditional foundation of game theory, decision theory, and utility theory, and, finally, the social sciences in their entirety, are discussed in depth in seven chapters and a preface: Rationality and the Foundations of the Social Sciences, ' Cooperation and Rationality, ' Rationality and Economics, ' Bayesian Theory and Rationality, ' Evolution and Evolutionary Game Theory, ' Ethics and Game Theory, ' and Applications of Game Theory'. The contributors include economists, utility and decision theorists, psychologists, sociologists, physicists, philosophers of sciencesand probability theorists. They attempt to make their contributions accessible to a wide audience. The book will interest researchers, teachers and advanced students in the above-mentioned disciplines; it can be used for a one-semester course on the graduate level. The volume also includes a review section focusing on recent publications on Logical Empiricism and its influence. An autobiographical report on the Vienna Circle by Arne Naess follows the main part of the Yearbook. An overview of the activities of the Institute Vienna Circle 1997/98 concludes the volume.
The availability of financial data recorded on high-frequency level has inspired a research area which over the last decade emerged to a major area in econometrics and statistics. The growing popularity of high-frequency econometrics is driven by technological progress in trading systems and an increasing importance of intraday trading, liquidity risk, optimal order placement as well as high-frequency volatility. This book provides a state-of-the art overview on the major approaches in high-frequency econometrics, including univariate and multivariate autoregressive conditional mean approaches for different types of high-frequency variables, intensity-based approaches for financial point processes and dynamic factor models. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications to volatility and liquidity estimation, order book modelling and market microstructure analysis.
This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.
Mathematical Game Theory and Applications Mathematical Game Theory and Applications An authoritative and quantitative approach to modern game theory with applications from economics, political science, military science and finance. Mathematical Game Theory and Applications combines both the theoretical and mathematical foundations of game theory with a series of complex applications along with topics presented in a logical progression to achieve a unified presentation of research results. This book covers topics such as two-person games in strategic form, zero-sum games, N-person non-cooperative games in strategic form, two-person games in extensive form, parlor and sport games, bargaining theory, best-choice games, co-operative games and dynamic games. Several classical models used in economics are presented which include Cournot, Bertrand, Hotelling and Stackelberg as well as coverage of modern branches of game theory such as negotiation models, potential games, parlor games and best choice games. Mathematical Game Theory and Applications: Presents a good balance of both theoretical foundations and complex applications of game theory. Features an in-depth analysis of parlor and sport games, networking games, and bargaining models. Provides fundamental results in new branches of game theory, best choice games, network games and dynamic games. Presents numerous examples and exercises along with detailed solutions at the end of each chapter. Is supported by an accompanying website featuring course slides and lecture content. Covering a host of important topics, this book provides a research springboard for graduate students and a reference for researchers who might be working in the areas of applied mathematics, operations research, computer science or economical cybernetics.
The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and equilibrium in human societies. Issues such as financial and economic crisis, sustainability, management of resources, risk analysis, and global integration have come to the fore. Written by some of the world's leading specialists, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Dynamics, Games and Science II, held in Lisbon, Portugal, 28 August -6 September 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book describes the state of the art in advanced research and ultimate techniques in modeling natural, economic and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences, focusing mainly on dynamical systems, game theory and applied sciences.
This book presents a variety of advanced research papers in optimization and dynamics written by internationally recognized researchers in these fields. As an example of applying optimization in sport, it introduces a new method for finding the optimal bat sizes in baseball and softball. The book is divided into three parts: operations research, dynamics, and applications. The operations research section deals with the convergence of Newton-type iterations for solving nonlinear equations and optimum problems, the limiting properties of the Nash bargaining solution, the utilization of public goods, and optimizing lot sizes in the automobile industry. The topics in dynamics include special linear approximations of nonlinear systems, the dynamic behavior of industrial clusters, adaptive learning in oligopolies, periodicity in duopolies resulting from production constraints, and dynamic models of love affairs. The third part presents applications in the fields of reverse logistic network design for end-of-life wind turbines, fuzzy optimization of the structure of agricultural products, water resources management in the restoration plans for a lake and also in groundwater supplies. In addition it discusses applications in reliability engineering to find the optimal preventive replacement times of deteriorating equipment and using bargaining theory to determine the best maintenance contract. The diversity of the application areas clearly illustrates the usefulness of the theory and methodology of optimization and dynamics in solving practical problems.
One common characteristics of a complex system is its ability to
withstand major disturbances and the capacity to rebuild itself.
Understanding how such systems demonstrate resilience by absorbing
or recovering from major external perturbations requires both
quantitative foundations and a multidisciplinary view on the
topic.
Optical networks epitomize complex communication systems, and they comprise the Internet s infrastructural backbone. The first of its kind, this book develops the mathematical framework needed from a control perspective to tackle various game-theoretical problems in optical networks. In doing so, it aims to help design control algorithms that optimally allocate the resources of these networks. With its fresh problem-solving approach, Game Theory in Optical Networks is a unique resource for researchers, practitioners, and graduate students in applied mathematics and systems/control engineering, as well as those in electrical and computer engineering."
Game Theory has been an area of rapid growth and substantial interest in economics and it has impacted upon all areas within economics. This text covers the main theory and techniques and gives particular emphasis to aspects that have been neglected, including co-operative games, experiments, and empirical studies. It provides a comprehensive and up-to-date introduction to the use of game theory in economics.
This book presents a mathematically-based introduction into the fascinating topic of Fuzzy Sets and Fuzzy Logic and might be used as textbook at both undergraduate and graduate levels and also as reference guide for mathematician, scientists or engineers who would like to get an insight into Fuzzy Logic. Fuzzy Sets have been introduced by Lotfi Zadeh in 1965 and since then, they have been used in many applications. As a consequence, there is a vast literature on the practical applications of fuzzy sets, while theory has a more modest coverage. The main purpose of the present book is to reduce this gap by providing a theoretical introduction into Fuzzy Sets based on Mathematical Analysis and Approximation Theory. Well-known applications, as for example fuzzy control, are also discussed in this book and placed on new ground, a theoretical foundation. Moreover, a few advanced chapters and several new results are included. These comprise, among others, a new systematic and constructive approach for fuzzy inference systems of Mamdani and Takagi-Sugeno types, that investigates their approximation capability by providing new error estimates. "
This book provides an introduction to the applications of game theory to a series of questions that are fundamental in political economy. These questions include: Why do we need states? What might happen without protection for life and property? How might tribes or criminal gangs behave in struggles over material possessions? Would people tell the truth if asked what they wanted?
This second edition of "A Beginner's Guide to Finite Mathematics" takes a distinctly applied approach to finite mathematics at the freshman and sophomore level. Topics are presented sequentially: the book opens with a brief review of sets and numbers, followed by an introduction to data sets, histograms, means and medians. Counting techniques and the Binomial Theorem are covered, which provides the foundation for elementary probability theory; this, in turn, leads to basic statistics. This new edition includes chapters on game theory and financial mathematics. Requiring little mathematical background beyond high school algebra, the text will be especially useful for business and liberal arts majors.
Economists can use computer algebra systems to manipulate symbolic models, derive numerical computations, and analyze empirical relationships among variables. Maxima is an open-source multi-platform computer algebra system that rivals proprietary software. Maxima's symbolic and computational capabilities enable economists and financial analysts to develop a deeper understanding of models by allowing them to explore the implications of differences in parameter values, providing numerical solutions to problems that would be otherwise intractable, and by providing graphical representations that can guide analysis. This book provides a step-by-step tutorial for using this program to examine the economic relationships that form the core of microeconomics in a way that complements traditional modeling techniques. Readers learn how to phrase the relevant analysis and how symbolic expressions, numerical computations, and graphical representations can be used to learn from microeconomic models. In particular, comparative statics analysis is facilitated. Little has been published on Maxima and its applications in economics and finance, and this volume will appeal to advanced undergraduates, graduate-level students studying microeconomics, academic researchers in economics and finance, economists, and financial analysts.
This book analyzes the following four distinct, although not dissimilar, areas of social choice theory and welfare economics: nonstrategic choice, Harsanyi's aggregation theorems, distributional ethics and strategic choice. While for aggregation of individual ranking of social states, whether the persons behave strategically or non-strategically, the decision making takes place under complete certainty; in the Harsanyi framework uncertainty has a significant role in the decision making process. Another ingenious characteristic of the book is the discussion of ethical approaches to evaluation of inequality arising from unequal distributions of achievements in the different dimensions of human well-being. Given its wide coverage, combined with newly added materials, end-chapter problems and bibliographical notes, the book will be helpful material for students and researchers interested in this frontline area research. Its lucid exposition, along with non-technical and graphical illustration of the concepts, use of numerical examples, makes the book a useful text.
Game theory is rapidly becoming one of the cornerstones of the social sciences. The articles gathered here chart the intellectual history of game theory from its place in the Enlightenment tradition, through the explosion of literature in the late 1970s, to issues of current and emerging debates. This extensively indexed set will be a valuable reference tool to researchers in sociology and politics, as well as economics.
This proceedings volume, the fifth in a series from the Combinatorial and Additive Number Theory (CANT) conferences, is based on talks from the 19th annual workshop, held online due to the COVID-19 pandemic. Organized every year since 2003 by the New York Number Theory Seminar at the CUNY Graduate Center, the workshops survey state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. The CANT 2021 meeting featured over a hundred speakers from North and South America, Europe, Asia, Australia, and New Zealand, and was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain peer-reviewed and edited papers on current topics in number theory. Topics featured in this volume include sumsets, minimal bases, Sidon sets, analytic and prime number theory, combinatorial and discrete geometry, numerical semigroups, and a survey of expansion, divisibility, and parity. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
The game of Dots-and-Boxes, the popular game in which two players take turns connecting an array of dots to form squares, or "boxes" has long been considered merely a child's game. In this book, however, the author reveals the surprising complexity of the game, along with advanced strategies that will allow the reader to win at any level of gameplay desired. This book is an essential guide to the game of Dots-and-Boxes and its mathematical underpinnings. Chapters of strategy are interspersed with dozens of sample problems and their solutions. Furthermore, the strategies can be applied to several other games, such as Strings-and-Coins and Nimstring.
In this chapter the topic of this book is introduced. Section 1. 1 provides a brief and rather general motivation for the scientific project undertaken here. Interest groups are a very popular object of scientific inquiry, and they received already considerable research attention from scholars in political science, as well as from researchers in economics. Necessarily, then, this book adds to a literature which is already quite developed. A detailed positioning in this literature of the theoretical material presented in this monograph will be given in Chapter 2. This second chapter will also, by means of a review of the empirical literature, provide a more general overview of the issues deemed to be important when studying the influence of interest groups on public policy. The outline of the entire book is described in greater detail in Section 1. 2. As most issues involved are more easily presented in later chapters, this introductory chapter is kept brief. 1. 1 MOTIVATION Substantial political power is often attributed to interest groups. Examples abound in both the economics and political science literature, as well as in journalistic accounts and popular publications. On many occasions the authors express concerns about the negative impact of interest groups on the democratic quality of government. "The interests of a small group are served at the expense of the interests of the general public, the taxpayers ," is an often heard popular complaint.
Game Theory: A Modeling Approach quickly moves readers through the fundamental ideas of the subject to enable them to engage in creative modeling projects based on game theoretic concepts. The authors match conclusions to real-world scenarios and applications. The text engages students in active learning, group work, in-class discussions and interactive simulations. Each chapter provides foundation pieces or adds more features to help readers build game theoretic models. The chapters include definitions, concepts and illustrative examples. The text will engage and challenge both undergraduate and graduate students. Features: Enables readers to apply game theorty to real-world scenarios Chapters can be used for core course materials or independent stuides Exercises, included at the end of the chapters, follow the order of the sections in the text Select answers and solutions are found at the end of the book Solutions manual for instructors is available from the authors
This Festschrift is dedicated to Goetz Trenkler on the occasion of his 65th birthday. As can be seen from the long list of contributions, Goetz has had and still has an enormous range of interests, and colleagues to share these interests with. He is a leading expert in linear models with a particular focus on matrix algebra in its relation to statistics. He has published in almost all major statistics and matrix theory journals. His research activities also include other areas (like nonparametrics, statistics and sports, combination of forecasts and magic squares, just to mention afew). Goetz Trenkler was born in Dresden in 1943. After his school years in East G- many and West-Berlin, he obtained a Diploma in Mathematics from Free University of Berlin (1970), where he also discovered his interest in Mathematical Statistics. In 1973, he completed his Ph.D. with a thesis titled: On a distance-generating fu- tion of probability measures. He then moved on to the University of Hannover to become Lecturer and to write a habilitation-thesis (submitted 1979) on alternatives to the Ordinary Least Squares estimator in the Linear Regression Model, a topic that would become his predominant ?eld of research in the years to come.
There are many examples of cooperation in Nature: cells cooperate to form tissues, organs cooperate to form living organisms, and individuals cooperate to raise their offspring or to hunt. However, why cooperation emerges and survives in hostile environments, when defecting would be a much more profitable short-term strategy, is a question that still remains open. During the past few years, several explanations have been proposed, including kin and group selection, punishment and reputation mechanisms, or network reciprocity. This last one will be the center of the present study. The thesis explores the interface between the underlying structure of a given population and the outcome of the cooperative dynamics taking place on top of it, (namely, the Prisoner's Dilemma Game). The first part of this work analyzes the case of a static system, where the pattern of connections is fixed, so it does not evolve over time. The second part develops two models for growing topologies, where the growth and the dynamics are entangled.
This contributed volume considers recent advances in dynamic games and their applications, based on presentations given at the 16th Symposium of the International Society of Dynamic Games, held July 9-12, 2014, in Amsterdam. Written by experts in their respective disciplines, these papers cover various aspects of dynamic game theory including differential games, evolutionary games, and stochastic games. They discuss theoretical developments, algorithmic methods, issues relating to lack of information, and applications in areas such as biological or economical competition, stability in communication networks, and maintenance decisions in an electricity market, just to name a few. Advances in Dynamic and Evolutionary Games presents state-of-the-art research in a wide spectrum of areas. As such, it serves as a testament to the vitality and growth of the field of dynamic games and their applications. It will be of interest to an interdisciplinary audience of researchers, practitioners, and advanced graduate students. |
You may like...
Fertility, Mortality and Migration in…
Veijo Notkola, Harri Siiskonen
Hardcover
R1,858
Discovery Miles 18 580
Implementing Play Therapy with Groups…
Clair Mellenthin, Jessica Stone, …
Paperback
R1,103
Discovery Miles 11 030
Numerical Methods for Optimal Control…
Maurizio Falcone, Roberto Ferretti, …
Hardcover
R2,904
Discovery Miles 29 040
Order Statistics: Applications, Volume…
Narayanaswamy Balakrishnan, C.R. Rao
Hardcover
R3,377
Discovery Miles 33 770
Star Wars - The Clone Wars - Season 2…
James Arnold Taylor, Matt Lanter, …
DVD
(1)R90 Discovery Miles 900
Statistical Analysis for…
Arnoldo Frigessi, Peter Buhlmann, …
Hardcover
|